Static analyzers are playing crucial roles in helping find programming mistakes and security vulnerabilities. The correctness of their analysis results is crucial for the usability in practice. Otherwise, the potential defects in these analyzers (e.g., implementation errors, improper design choices) could affect the soundness (leading to false negatives) and precision (leading to false positives). However, finding the defects in off-the-shelf static analyzers is challenging because these analyzers usually lack clear and complete specifications, and the results of different analyzers may differ. To this end, this paper designs two novel types of automated oracles to find defects in static analyzers with randomly generated programs. The first oracle is constructed by using dynamic program executions and the second one leverages the inferred static analysis results. We applied these two oracles on three state-of-the-art static analyzers: Clang Static Analyzer (CSA), GCC Static Analyzer (GSA), and Pinpoint. We found 38 unique defects in these analyzers, 28 of which have been confirmed or fixed by the developers. We conducted a case study on these found defects followed by several insights and lessons learned for improving and better understanding static analyzers. We have made the artifacts publicly available at https://anonymous.4open.science/r/SA_Bugs-583F for replication and benefit the community.