Fri 19 Jul 2024 11:18 - 11:36 at Pitomba - AI4SE 4 Chair(s): Wesley Assunção

Increasing studies have shown bugs in multi-language software as a critical loophole in modern software quality assurance, especially those induced by language interactions (i.e., multilingual bugs). Yet existing tool support for bug detection/localization remains largely limited to single-language software, despite the long-standing prevalence of multi-language systems in various real-world software domains. Extant static/dynamic analysis and deep learning (DL) based approaches all face major challenges in addressing multilingual bugs. In this paper, we present xLoc, a DL-based technique/tool for detecting and localizing multilingual bugs. Motivated by results of our bug-characteristics study on top locations of multilingual bugs, xLoc first learns the general knowledge relevant to differentiating various multilingual control-flow structures. This is achieved by pre-training a Transformer model with customized position encoding against novel objectives. Then, xLoc learns task-specific knowledge for the task of multilingual bug detection/localization, through another new position encoding scheme (based on cross-language API vicinity) that allows for the model to attend particularly to control-flow constructs that bear most multilingual bugs during fine-tuning. We have implemented xLoc for Python-C software and curated a dataset of 3,770 buggy and 15,884 non-buggy Python-C samples, which enabled our extensive evaluation of xLoc against two state-of-the-art baselines: fine-tuned CodeT5 and zero-shot ChatGPT. Our results show that xLoc achieved 94.98% F1 and 87.24%@Top-1 accuracy, which are significantly (up to 162.88% and 511.75%) higher than the baselines. Ablation studies further confirmed significant contributions of each of the novel design elements in xLoc. With respective bug-location characteristics and labeled bug datasets for fine-tuning, our design may be applied to other language combinations beyond Python-C.

Fri 19 Jul

Displayed time zone: Brasilia, Distrito Federal, Brazil change

11:00 - 12:30
AI4SE 4 Research Papers at Pitomba
Chair(s): Wesley Assunção North Carolina State University
11:00
18m
Talk
Improving the Learning of Code Review Successive Tasks with Cross-Task Knowledge DistillationDistinguished Paper Award
Research Papers
Oussama Ben Sghaier DIRO, Université de Montréal, Houari Sahraoui DIRO, Université de Montréal
11:18
18m
Talk
Learning to Detect and Localize Multilingual Bugs
Research Papers
Haoran Yang Washington State University, Yu Nong Washington State University, Tao Zhang Macau University of Science and Technology, Xiapu Luo The Hong Kong Polytechnic University, Haipeng Cai Washington State University
DOI Pre-print
11:36
18m
Talk
Mining Action Rules for Defect Reduction Planning
Research Papers
Khouloud Oueslati Polytechnique Montréal, Canada, Gabriel Laberge Polytechnique Montréal, Canada, Maxime Lamothe Polytechnique Montreal, Foutse Khomh Polytechnique Montréal
11:54
18m
Talk
Predicting Failures of Autoscaling Distributed Applications
Research Papers
Giovanni Denaro University of Milano - Bicocca, Noura El Moussa USI Università della Svizzera Italiana & SIT Schaffhausen Institute of Technology, Rahim Heydarov USI Università della Svizzera Italiana, Francesco Lomio SIT Schaffhausen Institute of Technology, Mauro Pezze USI Università della Svizzera Italiana & SIT Schaffhausen Institute of Technology, Ketai Qiu USI Università della Svizzera Italiana
DOI Pre-print
12:12
18m
Talk
RavenBuild: Context, Relevance, and Dependency Aware Build Outcome Prediction
Research Papers
Gengyi Sun University of Waterloo, Sarra Habchi Ubisoft Montréal, Shane McIntosh University of Waterloo