Wed 17 Jul 2024 17:30 - 17:48 at Sapoti - Fault Diagnosis and Root Cause Analysis 1 Chair(s): Muhammad Ali Gulzar

In large-scale online service systems, the occurrence of software changes is inevitable and frequent. Despite rigorous pre-deployment testing practices, the presence of defective software changes in the online environment cannot be completely eliminated. Consequently, there is a pressing need for automated techniques that can effectively identify these defective changes. However, the current abnormal change detection (ACD) approaches fall short in accurately pinpointing defective changes, primarily due to their disregard for the propagation of faults. To address the limitations of ACD, we propose a novel concept called root cause change analysis (RCCA) to identify the underlying root causes of change-inducing incidents. In order to apply the RCCA concept to practical scenarios, we have devised an intelligent RCCA framework named ChangeRCA. This framework aims to localize the defective change associated with change-inducing incidents among multiple changes. To assess the effectiveness of ChangeRCA, we have conducted an extensive evaluation utilizing a real-world dataset from WeChat and a simulated dataset encompassing 81 diverse defective changes. The evaluation results demonstrate that ChangeRCA outperforms state-of-the-art, achieving an impressive Top-1 Hit Rate of 85% and significantly reducing the time required to identify defective changes.

Wed 17 Jul

Displayed time zone: Brasilia, Distrito Federal, Brazil change

16:00 - 18:00
Fault Diagnosis and Root Cause Analysis 1Demonstrations / Research Papers / Industry Papers at Sapoti
Chair(s): Muhammad Ali Gulzar Virginia Tech
16:00
18m
Talk
A Quantitative and Qualitative Evaluation of LLM-based Explainable Fault Localization
Research Papers
Sungmin Kang Korea Advanced Institute of Science and Technology, Gabin An Korea Advanced Institute of Science and Technology, Shin Yoo Korea Advanced Institute of Science and Technology
Pre-print
16:18
18m
Talk
BARO: Robust Root Cause Analysis for Microservices via Multivariate Bayesian Online Change Point Detection
Research Papers
Luan Pham RMIT University, Huong Ha RMIT University, Hongyu Zhang Chongqing University
Pre-print
16:36
18m
Talk
Fault Diagnosis for Test Alarms in Microservices Through Multi-source Data
Industry Papers
Shenglin Zhang Nankai University, Jun Zhu Nankai University, Bowen Hao Nankai University, Yongqian Sun Nankai University, Xiaohui Nie CNIC, CAS, Jingwen Zhu Nankai University, Xilin Liu Huawei Cloud, Xiaoqian Li Huawei Cloud, Yuchi Ma Huawei Cloud Computing Technologies CO., LTD., Dan Pei Tsinghua University
16:54
18m
Talk
Costs and Benefits of Machine Learning Software Defect Prediction: Industrial Case Study
Industry Papers
Szymon Stradowski Wroclaw University of Science and Technology & NOKIA, Lech Madeyski Wroclaw University of Science and Technology
17:12
18m
Talk
Chain-of-Event: Interpretable Root Cause Analysis for Microservices through Automatically Learning Weighted Event Causal Graph
Industry Papers
Zhenhe Yao Tsinghua University, Changhua Pei Computer Network Information Center at Chinese Academy of Sciences, Wenxiao Chen Tsinghua University, Hanzhang Wang Walmart Global Tech, Liangfei Su eBay, USA, Huai Jiang eBay, USA, Zhe Xie Tsinghua University, Xiaohui Nie CNIC, CAS, Dan Pei Tsinghua University
17:30
18m
Talk
ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems
Research Papers
Guangba  Yu Sun Yat-sen University, Pengfei Chen Sun Yat-sen University, Zilong He Sun Yat-sen University, Qiuyu Yan Tencent, Yu Luo Tencent, Fangyuan Li Tencent, Zibin Zheng Sun Yat-sen University
DOI Pre-print
17:48
9m
Talk
MineCPP: Mining Bug Fix Pairs and Their Structures
Demonstrations
Sai Krishna Avula IIT Gandhinagar, Shouvick Mondal IIT Gandhinagar
DOI Pre-print Media Attached