Wed 17 Jul 2024 11:00 - 11:18 at Pitomba - Code Search and Completion Chair(s): Akond Rahman

Runtime auto-remediation is crucial for ensuring the reliability and efficiency of distributed systems, especially within complex microservice-based applications. However, the complexity of modern microservice deployments often surpasses the capabilities of traditional manual remediation and existing autonomic computing methods. Our proposed solution harnesses large language models (LLMs) to generate and execute Ansible playbooks automatically to address issues within these complex environments. Ansible playbooks, a widely adopted markup language for IT task automation, facilitate critical actions such as addressing network failures, resource constraints, configuration errors, and application bugs prevalent in managing microservices. We fine-tune pre-trained LLMs using our custom-made Ansible-based remediation dataset, equipping these models to comprehend diverse remediation tasks within microservice environments. Once in-context tuned, these LLMs efficiently generate precise Ansible scripts tailored to specific issues encountered, surpassing current state-of-the-art techniques with high functional correctness (95.45%) and average correctness (98.86%).

Wed 17 Jul

Displayed time zone: Brasilia, Distrito Federal, Brazil change

11:00 - 12:30
Code Search and CompletionIndustry Papers / Research Papers at Pitomba
Chair(s): Akond Rahman Auburn University
11:00
18m
Talk
Leveraging Large Language Models for the Auto-remediation of Microservice Applications - An Experimental Study
Industry Papers
Komal Sarda York University, Zakeya Namrud York University, Marin Litoiu York University, Canada, Larisa Shwartz IBM T.J. Watson Research, Ian Watts IBM Canada
11:18
18m
Talk
CodePlan: Repository-level Coding using LLMs and Planning
Research Papers
Ramakrishna Bairi Microsoft Research, India, Atharv Sonwane Microsoft Research, India, Aditya Kanade Microsoft Research, India, Vageesh D C Microsoft Research, India, Arun Iyer Microsoft Research, India, Suresh Parthasarathy Microsoft Research, India, Sriram Rajamani Microsoft Research Indua, B. Ashok Microsoft Research. India, Shashank Shet Microsoft Research. India
11:36
18m
Talk
An Empirical Study of Code Search in Intelligent Coding Assistant: Perceptions, Expectations, and Directions
Industry Papers
Chao Liu Chongqing University, Xindong Zhang Alibaba Cloud Computing Co. Ltd., Hongyu Zhang Chongqing University, Zhiyuan Wan Zhejiang University, Zhan Huang Chongqing University, Meng Yan Chongqing University
11:54
18m
Talk
DeciX: Explain Deep Learning Based Code Generation Applications
Research Papers
Simin Chen University of Texas at Dallas, Zexin Li University of California, Riverside, Wei Yang University of Texas at Dallas, Cong Liu University of California, Riverside
12:12
18m
Talk
IRCoCo: Immediate Rewards-Guided Deep Reinforcement Learning for Code Completion
Research Papers
Bolun Li Shandong Normal University, Zhihong Sun Shandong Normal University, Tao Huang Shandong Normal University, Hongyu Zhang Chongqing University, Yao Wan Huazhong University of Science and Technology, Chen Lyu Shandong Normal University, Ge Li Peking University, Zhi Jin Peking University